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Abstract 

Generative Artificial Intelligence (AI), encompassing models such as Generative Adversarial 
Networks (GANs) and Diffusion Models, has recently emerged as a powerful tool for 
producing high-fidelity synthetic data across various domains. In healthcare, where data 
privacy regulations like HIPAA and GDPR restrict access to patient records, generative AI 
offers a transformative opportunity to simulate realistic yet anonymized datasets that can 
support medical research, machine learning model development, and healthcare analytics. 
This paper explores the design, implementation, and evaluation of generative AI models for 
creating synthetic electronic health records (EHRs) and medical imaging data. We propose a 
robust evaluation framework to assess the fidelity, utility, privacy, and diversity of the 
synthetic data produced. Through comprehensive experiments on the MIMIC-III clinical 
dataset and the NIH Chest X-ray14 imaging dataset, we demonstrate that generative models 
can produce synthetic data that achieves over 90% retention of predictive utility for 
downstream tasks such as mortality prediction and disease classification. Moreover, we 
conduct privacy audits including membership inference attacks to validate the resilience of 
synthetic datasets against privacy breaches. Our findings indicate that generative models, 
when carefully designed and tuned, can strike a practical balance between data realism and 
privacy protection, thereby enabling ethical and reproducible AI research in healthcare. The 
implications of this work extend to low-resource settings, global data sharing during 
pandemics, and the creation of AI-ready data pipelines without compromising sensitive 
patient information. 

Keywords: Generative Adversarial Network, Electronic Healthcare Records, Privacy 
protection, high-fidelity synthetic data. 

I.Introduction 

The exponential growth of data in the healthcare industry has created both unprecedented 
opportunities and significant challenges. From electronic health records (EHRs) and 
radiological images to genomic sequences and wearable sensor streams, the breadth and 
complexity of medical data continue to expand. These datasets are invaluable for the 
development of artificial intelligence (AI) systems capable of early disease detection, risk 
prediction, and personalized treatment planning. However, due to stringent privacy laws—
such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States 
and the General Data Protection Regulation (GDPR) in the European Union—access to real 
patient data is heavily restricted. Consequently, AI model training and medical research often 
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suffer from limited data availability, restricted reproducibility, and institutional silos that 
prevent cross-border collaboration. 

In response to these challenges, generative AI has emerged as a promising technological 
solution that can create synthetic data resembling real patient records, while mitigating 
privacy concerns. Generative models, including Generative Adversarial Networks (GANs), 
Variational Autoencoders (VAEs), and Denoising Diffusion Probabilistic Models (DDPMs), 
are capable of learning complex data distributions and generating high-fidelity synthetic 
samples that maintain the statistical characteristics of the original datasets. When applied to 
the healthcare domain, these models can synthesize EHR entries, lab test results, and even 
radiographic images, offering a viable pathway to data democratization without 
compromising patient confidentiality. 

Beyond their capacity for privacy-preserving data generation, generative models have also 
shown promise in enhancing the robustness and generalization of downstream machine 
learning tasks. By augmenting training datasets with synthetic examples, models can become 
less sensitive to noise, class imbalance, or rare pathological cases. Furthermore, generative AI 
opens up new possibilities in global healthcare scenarios—for example, enabling low-
resource regions to benefit from synthetic data that mimics high-quality datasets collected in 
advanced medical institutions. During health emergencies such as the COVID-19 pandemic, 
generative models could facilitate faster research by generating data surrogates when real 
samples are sparse, delayed, or ethically problematic to share. 

Nevertheless, the integration of generative AI into the healthcare pipeline is not without its 
complexities. Issues surrounding data fidelity, model interpretability, evaluation metrics, and 
ethical accountability remain open areas of investigation. There exists a delicate balance 
between preserving privacy and ensuring the synthetic data remains useful for training 
reliable and clinically relevant AI models. Improperly tuned generative models can produce 
unrealistic or biased outputs, leading to flawed diagnostics or erroneous research conclusions. 
Moreover, emerging risks such as re-identification attacks against synthetic datasets 
necessitate robust privacy audits and compliance with responsible AI guidelines. 

This research aims to systematically explore the use of generative AI models for synthetic 
healthcare data generation. We focus on two core modalities: structured EHR data and 
medical imaging, both of which are critical for clinical decision-making and AI system 
training. By leveraging state-of-the-art generative architectures—specifically Conditional 
GANs for tabular data and Diffusion Models for image synthesis—we investigate the quality, 
utility, and privacy of generated data. Our contributions include a standardized framework for 
evaluating synthetic healthcare data, empirical benchmarks against real datasets, and an 
analysis of privacy preservation through adversarial testing. 

Ultimately, this study seeks to highlight the practical viability of generative AI as a tool for 
ethical, efficient, and scalable healthcare data sharing. It lays the foundation for future work 
in regulatory-compliant synthetic data generation, federated learning integration, and real-
world deployment of generative healthcare systems. By addressing both technical rigor and 
ethical concerns, we aim to bridge the gap between innovation and responsibility in the age of 
data-driven medicine. 
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II.Literature review 

The application of generative models in artificial intelligence has evolved significantly over 
the past decade, driven by advances in deep learning and the availability of large-scale 
datasets. In healthcare, these models offer a compelling opportunity to synthesize data that 
retains the statistical properties of real-world clinical information while ensuring patient 
anonymity. To fully appreciate the significance of generative AI in this domain, it is 
necessary to examine both the foundational technologies and the current body of research that 
informs this work. 

A. Foundations of Generative AI 

Generative models are a class of machine learning algorithms that aim to model the 
underlying probability distribution of data and sample new data points from this distribution. 
Among the most prominent generative architectures are Generative Adversarial Networks 
(GANs), introduced by Goodfellow et al. in 2014 [1]. A GAN consists of two neural 
networks—the generator and the discriminator—engaged in a minimax game. The generator 
produces synthetic samples from random noise, while the discriminator attempts to 
distinguish between real and synthetic data. Through iterative training, the generator learns to 
produce increasingly realistic samples that the discriminator cannot easily differentiate. 

In contrast, Variational Autoencoders (VAEs) adopt a probabilistic approach to data 
generation. They encode input data into a latent space and then decode it back into the 
original data domain while introducing stochasticity in the latent representation. VAEs are 
known for their stability in training and theoretical grounding in Bayesian inference, although 
they may produce blurrier outputs in image-based tasks compared to GANs [2]. 

Recently, Diffusion Models have emerged as a promising alternative for high-resolution data 
generation. These models learn to reverse a gradual noising process, allowing them to 
generate clean data from random noise. Diffusion models have demonstrated state-of-the-art 
performance in image synthesis and are especially well-suited for generating complex visual 
structures, making them highly relevant to medical imaging applications [3]. 

B. Synthetic Data in Healthcare: Applications and Challenges 

The synthesis of healthcare data presents a unique intersection of opportunity and risk. On 
one hand, real medical data is sensitive, regulated, and often siloed across institutions, 
impeding collaborative research and the development of generalized AI models. On the other 
hand, high-quality synthetic data has the potential to democratize access to medical datasets, 
reduce algorithmic bias, and enhance model robustness through data augmentation. 

Several studies have explored the use of GANs for generating synthetic EHRs. Choi et al. 
introduced medGAN, an architecture specifically designed for high-dimensional binary 
medical data, showing that synthetic patient records could be used to train predictive models 
with performance comparable to those trained on real data [4]. Extensions such as 
HealthGAN and EMR-WGAN improved upon medGAN by addressing issues like mode 
collapse and lack of diversity in generated records [5][6]. Similarly, CTGAN, a conditional 
tabular GAN developed by Xu et al., demonstrated superior performance in generating 
structured tabular datasets with mixed data types, making it particularly suitable for EHR 
synthesis [7]. 
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In the domain of medical imaging, Frid-Adar et al. used GANs to augment liver lesion 
datasets to improve classification accuracy [8], while more recent approaches have leveraged 
diffusion models to generate high-resolution chest X-rays and CT scans [9]. These generative 
methods have been particularly valuable in addressing the problem of class imbalance, such 
as generating additional samples of rare diseases or underrepresented demographics. 

Despite these advances, the generation of synthetic healthcare data introduces several key 
challenges. Fidelity, or the extent to which synthetic data mirrors real data distributions, is a 
central concern. Poorly generated data can lead to misleading insights or ineffective model 
training. Utility, defined as the usefulness of synthetic data for downstream tasks such as 
classification or prediction, must also be quantified to ensure that the generated data serves its 
intended purpose. Perhaps most critically, privacy remains a core consideration. Synthetic 
data must not inadvertently leak identifiable patient information—a risk exacerbated by 
overfitting or insufficient model regularization. Several privacy attacks, including 
membership inference attacks and model inversion, have been shown to compromise poorly 
constructed generative models [10][11]. 

C. Evaluation Frameworks and Limitations in Current Research 

There is a growing body of literature proposing frameworks to evaluate the quality of 
synthetic data. These frameworks typically assess statistical similarity, task-based utility, and 
privacy robustness. However, there is still no universally accepted standard for benchmarking 
synthetic healthcare datasets. Many studies report results on different datasets, use 
inconsistent metrics, or fail to report privacy evaluations altogether. Furthermore, the ethical 
dimensions of synthetic data generation—such as algorithmic bias, explainability, and 
regulatory compliance—are often underexplored. 

In addition, most current research focuses on either structured EHR data or unstructured 
imaging data in isolation. Few studies attempt to build multimodal generative models that 
capture the interplay between clinical variables and imaging modalities, despite the clinical 
reality that diagnoses often rely on both. 

Our work seeks to address several of these limitations by introducing a unified framework for 
evaluating synthetic data across multiple healthcare modalities. We employ rigorous 
experimental procedures to quantify fidelity, utility, and privacy, using real-world clinical 
datasets and state-of-the-art generative architectures. By focusing on both structured and 
unstructured data, we aim to contribute a holistic perspective on the current and future role of 
generative AI in medical data synthesis. 

III.Methodology 

This study introduces a generative framework designed to produce synthetic healthcare data, 
with the dual objective of ensuring data realism while preserving patient privacy. The 
methodology is divided into two streams, focusing respectively on structured electronic 
health records (EHR) and unstructured medical imaging data. Both streams follow a unified 
evaluation framework that quantifies the synthetic data's fidelity, utility, and resistance to 
privacy breaches. The following subsections describe in detail the data sources, model 
architectures, training procedures, and evaluation strategies employed. 
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To model structured healthcare data, we utilized the Medical Information Mart for Intensive 
Care (MIMIC-III) dataset, a large, de-identified dataset containing real clinical records of 
over 40,000 intensive care patients. From this dataset, we extracted a subset of variables that 
are both clinically relevant and statistically diverse. The selection included demographic 
attributes such as age and gender, along with categorical variables like admission type and 
diagnosis codes. Continuous features, including length of stay and laboratory measurements, 
were normalized to a standard range. Categorical variables were transformed using one-hot 
encoding. Temporal features were excluded in this phase to simplify the modeling process, 
although they remain an important avenue for future research. 

In parallel, the unstructured data stream employed the NIH ChestX-ray14 dataset, a publicly 
available collection of over 100,000 labeled chest radiographs. To maintain consistency and 
computational feasibility, a random sample of 10,000 frontal-view images was selected and 
resized to 128 by 128 pixels. Each image was standardized using mean-zero and unit-
variance normalization. Pathology labels associated with the images, covering a range of 
thoracic diseases such as pneumonia, emphysema, and cardiomegaly, were used to condition 
the generative process. This ensured that the synthetic images could be generated in a class-
specific manner. 

For the generation of structured EHR data, we adopted the Conditional Tabular GAN 
(CTGAN) architecture. CTGAN is designed specifically to address the challenges of 
modeling mixed-type tabular data, such as imbalances in class frequency and the co-
occurrence of continuous and categorical variables. The generator model learns to produce 
synthetic patient records by sampling from a noise distribution combined with a conditioning 
vector that specifies certain features or outcomes. The discriminator simultaneously learns to 
distinguish between real and generated records, guiding the generator toward producing data 
that is statistically indistinguishable from real samples. We trained CTGAN for 300 epochs 
using the Adam optimization algorithm, with a learning rate selected through empirical 
tuning. During training, special care was taken to ensure that the conditional sampling 
process preserved the marginal and joint distributions of rare clinical categories. 

For unstructured image generation, we implemented a Latent Diffusion Model (LDM), which 
has recently emerged as a powerful tool for high-resolution image synthesis. Unlike 
traditional diffusion models that operate in pixel space, the LDM architecture first 
compresses images into a lower-dimensional latent space using a convolutional autoencoder. 
The diffusion process is then applied within this latent space, where the model gradually 
learns to reverse a noise schedule and generate realistic image representations. A denoising 
neural network based on a U-Net backbone was used for this reverse diffusion, trained over 
several hundred thousand iterations. Class-conditional synthesis was enabled by embedding 
the pathology labels into the model’s conditioning path, allowing the generation of disease-
specific images. After diffusion in the latent space, the synthetic images were reconstructed 
back to pixel space using the trained decoder network. 

The evaluation of the generative models was conducted across three main axes: fidelity, 
utility, and privacy. To assess fidelity, we compared the statistical properties of synthetic data 
to the original datasets. For structured data, we measured distributional similarity using the 
Kolmogorov–Smirnov test for continuous variables and the Jensen–Shannon divergence for 
categorical distributions. In the image domain, we utilized the Frechet Inception Distance 
(FID), computed using a pre-trained medical image encoder, to quantify visual similarity 
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between real and generated images. A lower FID score indicates that the synthetic images 
closely resemble the real ones in feature space. 

To evaluate utility, we tested whether models trained on synthetic data could perform clinical 
prediction tasks with performance comparable to those trained on real data. For structured 
data, we trained classifiers such as logistic regression and random forests to predict outcomes 
like in-hospital mortality and 30-day readmission. These models were trained on synthetic 
data and tested on held-out real data, with metrics such as AUC-ROC, accuracy, and F1 score 
used to quantify predictive performance. For the image domain, a convolutional neural 
network was trained to classify chest X-rays into one of several pathologies, again using 
synthetic data for training and real data for testing. The preservation of utility indicates that 
the synthetic data captures meaningful clinical patterns. 

Privacy preservation was evaluated using simulated attack scenarios. To test for membership 
inference vulnerabilities, we constructed adversarial models trained to distinguish whether a 
given sample was part of the training set used to build the generative model. The attacker's 
success rate was compared to a random baseline to determine the degree of overfitting in the 
generator. We also conducted attribute inference attacks, where partial patient data was used 
to infer missing or sensitive attributes. Results were compared against a baseline model 
trained on random noise to determine the increase in information leakage. These experiments 
collectively ensured that the generative models do not memorize specific patient records and 
are safe for public use. 

All models were implemented using the PyTorch framework and trained on NVIDIA A100 
GPUs. To ensure reproducibility, random seeds were fixed, and each experiment was 
repeated with five different initializations. Hyperparameters were selected based on 
validation performance, and training logs were monitored to detect convergence issues or 
overfitting. The source code and trained model weights are publicly available on GitHub 
under an MIT license, along with a subset of the synthetic data samples generated during the 
experiments. 

IV.Results and discussion 

The results of our experiments demonstrate that generative models, when properly designed 
and trained, can effectively produce synthetic healthcare data with high fidelity, strong 
predictive utility, and acceptable levels of privacy protection. This section presents our 
empirical findings across structured electronic health records (EHR) and unstructured 
medical imaging data, followed by a critical discussion of their implications. 

In the structured data domain, the Conditional Tabular GAN (CTGAN) generated synthetic 
patient records that closely mirrored the real data distribution. The Kolmogorov–Smirnov 
(KS) statistics calculated for continuous features—such as length of stay and patient age—
showed low divergence values, indicating that the generated distributions aligned well with 
those in the MIMIC-III dataset. For categorical variables, including diagnosis codes and 
admission types, the Jensen–Shannon divergence remained consistently below 0.05 across 
multiple training runs. These quantitative results were corroborated by visual inspection of 
feature histograms, which confirmed that CTGAN was able to reproduce both the marginal 
and conditional distributions observed in the real-world data. Importantly, the model 
maintained this fidelity even for less frequent patient classes, such as specific comorbidities 
or rare admission types, owing to its conditional sampling mechanism. 
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In terms of downstream utility, predictive models trained solely on synthetic EHR data 
exhibited comparable performance to those trained on real data. For the in-hospital mortality 
prediction task, a logistic regression model trained on synthetic data achieved an AUC-ROC 
score of 0.85 when evaluated on real test data, compared to 0.87 when trained on actual 
patient records. Similarly, a random forest classifier trained on synthetic records produced a 
precision score within 3% of its real-data counterpart. These results suggest that synthetic 
records generated by CTGAN retain clinically meaningful relationships among features, 
allowing machine learning algorithms to generalize effectively when applied to real-world 
patients. 

The latent diffusion model (LDM) for chest X-ray synthesis also demonstrated impressive 
results. Quantitatively, the Frechet Inception Distance (FID) between real and synthetic 
images was 24.7, a score that is competitive with recent benchmarks for medical image 
generation. Visual inspection of synthetic images confirmed the model's capacity to 
reproduce detailed anatomical structures, such as lung contours, rib cages, and cardiac 
silhouettes. Moreover, when conditioning the model on specific pathology labels, the 
generated images displayed salient visual markers consistent with the targeted disease. For 
instance, synthetic images conditioned on pneumonia frequently exhibited opacity patterns in 
the lower lobes, while those generated for cardiomegaly showed enlarged cardiac silhouettes. 
These results validate the LDM’s effectiveness in not only replicating general image structure 
but also learning disease-specific visual patterns. 

From a utility standpoint, convolutional neural networks trained on synthetic chest X-rays 
performed well in classification tasks. A DenseNet-121 model trained on generated images 
achieved a multi-class AUC-ROC of 0.81 when tested on real images from the NIH ChestX-
ray14 dataset. Although this performance is slightly below the 0.86 score achieved by the 
model trained on real data, it is sufficient to demonstrate that the synthetic images 
encapsulate diagnostic information in a form usable by deep learning models. This finding 
has important implications for settings where real medical images are scarce or cannot be 
shared due to privacy regulations. 

In assessing privacy risks, our evaluation of membership inference attacks revealed that the 
synthetic data models were resilient to common attack strategies. The attacker's true positive 
rate remained close to the random guessing baseline of 50%, indicating that the models did 
not memorize training samples. Similarly, attribute inference attacks failed to extract 
sensitive attributes with accuracy significantly above chance. These results suggest that the 
training processes of both CTGAN and LDM do not expose individual patient identities, 
thereby supporting their potential for privacy-preserving data sharing and research 
collaboration. 

While these results are promising, several limitations must be acknowledged. First, the 
fidelity and utility metrics, though favorable, are task-dependent and may not generalize to all 
clinical applications. For instance, while the synthetic data performed well on classification 
tasks, it may be less suitable for causal inference or survival analysis, which require precise 
temporal modeling. Second, the evaluation of privacy risk remains an evolving area. 
Although the attack strategies employed in this study represent current best practices, 
adversarial techniques continue to evolve, and further stress-testing under different threat 
models is warranted. Lastly, while the diffusion model generated visually realistic chest X-
rays, the interpretability of these images from a radiological perspective remains to be 
rigorously validated by clinical experts. 
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In conclusion, the results support the feasibility of using generative models—specifically 
CTGAN and latent diffusion architectures—to produce synthetic healthcare data that is 
statistically and semantically aligned with real data. These findings underscore the 
transformative potential of generative AI in healthcare, enabling the development and 
evaluation of machine learning systems in a privacy-preserving and ethically responsible 
manner. However, ongoing validation, particularly in clinical settings, is essential to ensure 
the safe deployment of such synthetic data solutions in real-world medical applications. 

Table 1: Performance Comparison Between Real and Synthetic Data on Clinical 
Prediction Tasks 

Task Model Training Data AUC-
ROC 

Accuracy F1 
Score 

In-Hospital Mortality 
(EHR) 

Logistic 
Regression 

Real 0.87 0.81 0.79 

In-Hospital Mortality 
(EHR) 

Logistic 
Regression 

Synthetic 
(CTGAN) 

0.85 0.78 0.76 

30-Day Readmission 
(EHR) 

Random Forest Real 0.82 0.77 0.75 

30-Day Readmission 
(EHR) 

Random Forest Synthetic 
(CTGAN) 

0.79 0.75 0.72 

Chest X-ray Pathology 
Classification 

DenseNet-121 Real 0.86 0.80 0.78 

Chest X-ray Pathology 
Classification 

DenseNet-121 Synthetic 
(LDM) 

0.81 0.76 0.73 

 

Table II: Privacy Attack Evaluation Results 
Attack Type Dataset Model Attack Accuracy 

(%) 
Baseline Accuracy 
(%) 

Membership 
Inference 

MIMIC-III 
(EHR) 

CTGAN 51.4 50.0 

Membership 
Inference 

Chest X-ray LDM 50.9 50.0 

Attribute Inference MIMIC-III 
(EHR) 

CTGAN 53.7 50.0 

Attribute Inference Chest X-ray LDM 52.1 50.0 
 

V.Conclusion & Future Enhancement 

This research presents a systematic investigation into the use of generative artificial 
intelligence for the creation of synthetic healthcare data, focusing on both structured 
electronic health records and unstructured medical imaging. Through the implementation and 
evaluation of two advanced generative frameworks—Conditional Tabular GANs for EHR 
data and Latent Diffusion Models for chest X-ray generation—we demonstrate that synthetic 
data can closely replicate the statistical properties, visual characteristics, and predictive utility 
of real clinical datasets. Our findings suggest that, when properly configured and evaluated, 
generative AI models can serve as viable tools for augmenting training data, enabling model 
development in low-data settings, and facilitating data sharing in privacy-sensitive 
environments. 
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For structured tabular data, our experiments confirm that Conditional Tabular GANs can 
accurately model complex feature distributions and interdependencies. The synthetic records 
generated by CTGAN supported predictive models with near-parity performance to those 
trained on real MIMIC-III data. For unstructured medical imaging, the Latent Diffusion 
Model produced high-quality synthetic chest X-rays that preserved clinically significant 
visual patterns associated with specific pathologies. Importantly, utility tests with 
convolutional neural networks showed that classifiers trained on these synthetic images 
retained considerable diagnostic power when applied to real data. These outcomes support 
the feasibility of using generative models to create privacy-safe surrogates for sensitive 
clinical datasets. 

Beyond fidelity and utility, this study also evaluates the privacy implications of using 
generative models for healthcare data synthesis. Through the deployment of simulated 
membership and attribute inference attacks, we observed that both generative pipelines were 
resistant to memorization of training data. The attack success rates hovered around chance 
levels, providing early evidence that these models do not inadvertently leak identifiable 
information about real patients. This is a critical requirement for the practical deployment of 
synthetic data solutions in healthcare, where regulatory and ethical concerns demand strong 
privacy guarantees. 

Despite these promising results, there are several limitations to the current study that should 
be addressed in future work. First, while our evaluation covers important metrics such as 
fidelity, utility, and privacy, it does not incorporate rigorous clinical validation by medical 
experts. Future studies should involve practicing clinicians to assess the interpretability and 
realism of synthetic data in applied healthcare contexts. Second, our models operate on static 
representations of patient data. The inclusion of temporal dynamics, such as sequences of 
clinical events or disease progression over time, remains an open challenge that would 
require the development of recurrent or transformer-based generative architectures. Third, our 
privacy evaluation focuses primarily on basic attack models. More sophisticated adversarial 
strategies, including model inversion or reconstruction attacks, should be considered to fully 
stress-test the resilience of generative systems. 

In future work, we plan to extend our methodology to multi-modal healthcare data by 
integrating clinical notes, laboratory time series, and imaging studies into a unified generative 
framework. We also aim to explore differential privacy mechanisms and formal certification 
techniques to provide quantifiable guarantees about data anonymity. Finally, we see an 
opportunity to apply generative models in real clinical workflows—such as synthetic cohort 
generation for rare disease research or synthetic control arms in clinical trials—where access 
to real-world data is limited or ethically constrained. 

In summary, this study contributes to the growing body of evidence that generative AI can be 
safely and effectively applied in healthcare contexts. By enabling the creation of realistic and 
private synthetic data, these models have the potential to democratize access to clinical 
datasets, accelerate machine learning research, and ultimately support the development of 
more equitable and efficient healthcare systems. 
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