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Simple Summary: Diagnosing cancer at an early stage increases the chance of performing 

effective treatment in many tumour groups. Key approaches include screening patients who 
are at risk but have no symptoms, and rapidly and appropriately investigating those who do. 
Machine learning, whereby computers learn complex data patterns to make predictions, has 
the potential to revolutionise early cancer diagnosis. Here, we provide an overview of how 
such algorithms can assist doctors through analyses of routine health records, medical 
images, biopsy samples and blood tests to improve risk stratification and early diagnosis. 
Such tools will be increasingly utilised in the coming years. 
 

Abstract:  
Improving the proportion of patients diagnosed with early-stage cancer is a key priority of 
the World Health Organisation. In many tumour groups, screening programmes have led to 
improvements in survival, but patient selection and risk stratification are key challenges. In 
addition, there are concerns about limited diagnostic workforces, particularly in light of the 
COVID-19 pandemic, placing a strain on pathology and radiology services. In this review, we 
discuss how artificial intelligence algorithms could assist clinicians in (1) screening 
asymptomatic patients at risk of cancer, (2) investigating and triaging symptomatic patients, 
and (3) more effectively diagnosing cancer recurrence. We provide an overview of the main 
artificial intelligence approaches, including historical models such as logistic regression, as 
well as deep learning and neural networks, and highlight their early diagnosis applications. 
Many data types are suitable for computational analysis, including electronic healthcare 
records, diagnostic images, pathology slides and peripheral blood, and we provide examples 
of how these data can be utilised to diagnose cancer. We also discuss the potential clinical 
implications for artificial intelligence algorithms, including an overview of models currently 
used in clinical practice. Finally, we discuss the potential limitations and pitfalls, including 
ethical concerns, resource demands, data security and reporting standards. Artificial 
intelligence (AI) is rapidly reshaping cancer research and personalized clinical care. 
Availability of high dimensionality datasets coupled with advances in high performance 
computing as well as innovative deep learning architectures, has led to an explosion of AI 
use in various aspects of oncology research. These applications range from detection and 
classification of cancer, to molecular characterization of tumors and its microenvironment, 
to drug discovery and repurposing, to predicting treatment outcomes for patients. As these 
advances start penetrating the clinic, we foresee a shifting paradigm in cancer care 
becoming strongly driven by AI. 
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Introduction  
Early cancer diagnosis and artificial intelligence (AI) are rapidly evolving fields with 
important areas of convergence. In the United Kingdom, national registry data suggest that 
cancer stage is closely correlated with 1-year cancer mortality, with incremental declines in 
outcome per stage increase for some subtypes [1]. Using lung cancer as an example, 5-year 
survival rates following resection of stage I disease are in the range of 70–90%; however, 
rates overall are currently 19% for women and 13.8% for men [2]. In 2018, the proportion of 
patients diagnosed with early-stage (I or II) cancer in England was 44.3%, with proportions 
lower than 30% for lung, gastric, pancreatic, oesophageal and oropharyngeal cancers [3]. A 
national priority to improve early diagnosis rates to 75% by 2028 was outlined in the 
National Health Service (NHS) long-term plan [4]. Internationally, early diagnosis is 
recognised as a key priority by a number of organisations, including the World Health 
Organisation (WHO) and the International Alliance for Cancer Early Detection (ACED). Many 
studies indicate that screening can improve early cancer detection and mortality, but even 
in disease groups with established screening programmes such as breast cancer, there are 
ongoing debates surrounding patient selection and risk–benefit trade-offs, and concerns 
have been raised about a perceived ‘one size fits all’ approach incongruous with the aims of 
personalised medicine [5–7]. Patient selection and risk stratification are key challenges for 
screening programmes. AI algorithms, which can process vast amounts of multi-modal data 
to identify otherwise difficult-to-detect signals, may have a role in improving this process in 
the near future [8–10]. Moreover, AI has the potential to directly facilitate cancer diagnosis 
by triggering investigation or referral in screened individuals according to clinical 
parameters, and automating clinical workflows where capacity is limited [11]. In this review, 
we discuss the potential applications of AI for early cancer diagnosis in symptomatic and 
asymptomatic patients, focussing on the types of f data that can be used and the clinical 
areas most likely to see impacts in the near future of data that can be used and the clinical 
areas most likely to see impacts in the near future 
 

Early cancer diagnosis and artificial intelligence (AI) are rapidly evolving fields with 
important areas of convergence. In the United Kingdom, national registry data suggest that 
cancer stage is closely correlated with 1-year cancer mortality, with incremental declines in 
outcome per stage increase for some subtypes [1]. Using lung cancer as an example, 5-year 
survival rates following resection of stage I disease are in the range of 70–90%; however, 
overall rates are currently 19% for women and 13.8% for men [2]. In 2018, the proportion of 
patients diagnosed with early-stage (I or II) cancer in England was 44.3%, with proportions 
lower than 30% for lung, gastric, pancreatic, oesophageal, and oropharyngeal cancers [3]. A 
national priority to improve early diagnosis rates to 75% by 2028 was outlined in the 
National Health Service (NHS) long-term plan [4]. Internationally, early diagnosis is 
recognised as a key priority by a number of organisations, including the World Health 
Organization (WHO) and the International Alliance for Cancer Early Detection (ACED). 
Many studies indicate that screening can improve early cancer detection and mortality, but 
even in disease groups with established screening programmes—such as breast cancer—
there are ongoing debates surrounding patient selection and risk–benefit trade-offs. 
Concerns have been raised about a perceived ‘one size fits all’ approach, which may be 
incongruous with the aims of personalised medicine [5–7]. Patient selection and risk 
stratification are key challenges for screening programmes. AI algorithms, which can process 
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vast amounts of multi-modal data to identify otherwise difficult-to-detect signals, may have 
a role in improving this process in the near future [8–10]. 
Moreover, AI has the potential to directly facilitate cancer diagnosis by triggering 
investigation or referral in screened individuals according to clinical parameters, and 
automating clinical workflows where capacity is limited [11]. In this review, we discuss the 
potential applications of AI for early cancer diagnosis in symptomatic and asymptomatic 
patients, focusing on the types of data that can be used and the clinical areas most likely to 
see impacts in the near future. 
Convolutional Neural Networks: Workhorse for Image Classification Convolutional Neural 
Networks (CNNs) have been the most popular deep learning architectures used for image 
classification in cancer (Figure 1). CNNs apply a series of nonlinear transformations to 
structured data (such as raw pixels of an image) to learn relevant features automatically, 
unlike conventional machine learning models that frequently require manual feature 
curation. On the flip side, it is difficult to tell what features are learnt by the CNNs, making 
them what many have referred to as a “black box.” One consequence is that images used 
for CNNs should be carefully pre-processed to reduce the risk that the model learns from 
image artifacts. There are two major approaches for CNN models, one is transfer learning 
that uses images from large collection of natural objects (such as in ImageNet) to train the 
initial layers of a model (where the model learns to identify general features such as shapes, 
edges) and then uses the disease specific data to fine tune the training parameters in the 
last layers; second variation of CNNs is based on an autoencoder where the model learns 
background features from a subset of representative images and encodes a compressed 
representation of the basic features later used to initialize the CNN. In the CAMELYON16 
Challenge - a crowdsourced competition to identify and classify lymph node metastasis in 
breast cancer patients from whole slide images (WSI) of Hematoxylin and Eosin (H&E)- 
stained tumors - 25 out of the 32 submitted algorithms were CNNs and the top five 
classification models were exclusively based on transfer learning, that were GoogLeNet, 
ResNet, VGG-16 [2]. Khosravi et al. trained and tested several state-of-the-art deep learning 
models to classify WSI from H&E-stained tumor tissues of The Cancer Genome Atlas (TCGA) 
cohort and reported on the relative performance of these methods, noting that transfer 
learning-based Inception architectures (GoogLeNet V1 and V3) had an overall best 
performance for tumor-normal tissue and cancer subtype classification tasks [3]. 
 
 
Generating Predictive Models from Other Large Datasets: In the past decade, several 

national and international initiatives have resulted in the generation of large cancer 

datasets. These datasets are obtained from profiling tumor samples using diverse high 

throughput platforms and technologies. They are frequently used to build predictive models 

that inform research and may eventually inform clinical decisions (Figure 2A). The Cancer 

Genome Atlas (TCGA) is by far the most comprehensive publicly available compilation of 

tumor profiles and includes a large number of data types spanning genomics, epigenomics, 

proteomics, histopathology and radiology images [4]. Other efforts such as The Pan-Cancer 

Analysis of Whole Genomes (PCAWG), METABRIC, and GENIE have also compiled large 

numbers of cancer genomic profiles and made these data publicly available. Profiling 

technologies have evolved over time. For example genomic DNA profiling has expanded 
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from targeted panels to whole exomes to whole genomes. Gene expression profiling has 

evolved from genome wide microarrays to RNA sequencing (RNAseq) then to more granular 

single cell RNA-seq (scRNA-seq). Other mature technologies have led to the production of a 

wide ranging array of datasets, including DNA methylation profiles, large scale proteomics 

studies, perturbation studies including cell viability or cytotoxicity assays using small 

molecules, RNA interference (RNAi) or CRISPR screens, protein-protein interaction networks 

and more. The sheer breadth and diversity of datasets that are availably publicly or can be 

generated in minimal time presents a unique opportunity to integrate various data types. 

Many groups have shown the benefits of such integration. For example training predictive 

models on multiple integrated rather than singular data sources has been shown, for 

example by Cheerla et al. to improve prediction of overall survival in patients across cancers 

[5]. Madhukar et al used such integrative approach to predict the targets and mechanisms 

of action of small anti-cancer molecules and demonstrated clearly that integrating multiple 

data types improves prediction accuracy [6]. 

 
 

Data Quality and Model Selection Are Key: The basic strategy for machine learning 

workflows is fairly standard (Figure 2B). Data collection and cleaning are the first and key 

components of any workflow, as a model is as good as the data it is trained on. To ensure 

high quality of the collected data, it needs to be inspected and corrected for possible noise 

in both non-image (such as inaccurate data entries, missing values) and image (such as high 

intensity pixels from artifacts, uneven illumination) data types. The data also needs to be 

reviewed for possible biases that can lead to underfitting the model, or high variance that 

can lead to overfitting the model. A model overfits the data when it learns from artifacts or 

noise in the data rather than the true signal. The consequence of overfitting is that a model 

may generalize poorly to unseen data with different biases. Strategies such as cross 

validation, increasing the training set size, manually curating predictive features and using 

ensemble approaches have been recommended to diminish risks of overfitting. Another key 

step of machine learning workflows is to select and fine tune an optimal model based on its 

performance. The performance of a machine learning model is commonly measured using 

the Area Under the Receiver Operator Curve (AUROC or simply AUC), which quantifies the 

tradeoff between sensitivity and specificity. A good classifier should achieve both high 

sensitivity and high specificity but emphasis on either of them may be important for some 

applications. In general, an AUC of > 0.80 is considered good, but whether this threshold is 

also clinically acceptable may vary depending on the clinical use. Even if widely used, there 

are pitfalls in relying blindly on AUC as performance metric. For example, the AUC assesses 

model performance in a population but does not provide confidence in individual calls. For 

datasets that have a class imbalance such that the positive class (class of interest) examples 

are much less than the negative class examples and the focus of the model is to accurately 

detect the positive class, then Area Under the PrecisionRecall Curve (AUPRC) is a preferred 

alternative to AUC. After training and testing a model on a given cohort (usually split into 
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training and test sets), it is equally important to also validate the model on external 

independent datasets to ensure that the model is stable and generalizes well. AI model 

development is not a static process; the model needs to be tested from time-to-time as 

newer updated datasets become available. Routine maintenance is frequently required to 

ensure that model performance does not degrade due to concept drift, that is, when the 

relationship between the input and output variables change over time in unforeseen ways. 

In this Review, we sought to survey a broad spectrum of publications and studies that 

together capture the breadth and versatility of AI applied to oncology. We sought to 

describe models that range from those with prospective utilization in the clinic to models 

that drive research and discovery (Figure 3). This Review places special emphasis on deep 

learning as a technique for making machine learning models, but also covers use cases 

where traditional machine learning techniques have been used very effectively. Finally, we 

highlight the limitations and challenges that pave the path towards integrating AI models in 

clinic. 
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EARLY DETECTION, DIAGNOSIS, AND STAGING OF CANCER  
Timing of cancer detection, accuracy of cancer diagnosis and staging are key 

determinants of tumor aggressiveness and impact clinical decision-making and 

outcomes. In just a few years, AI has made significant contributions to this critical 

area of oncology, sometimes with performance comparable to that of human 

experts and with an added advantage of scalability and automation.  

 

Making Cancer Diagnoses More Accurate: Deep learning-based models that accurately 

diagnose cancer and identify cancer subtypes directly from histopathological and 

other medical images have been reported extensively. Deep neural networks (DNN) 

are powerful algorithms that can, with appropriate computing power, be applied to 

large images such as H&E-stained whole slide images (WSI) of tissue derived from 

biopsies or surgical resections. These model architectures have indeed exceled at 

classification of images such as determining whether a digitized stained slide 

contains cancer cells or not [2,3,7–13]. While attaining highest prediction accuracies 

for distinguishing tumor from healthy cells (AUCs > 0.99), DNNs are used for more 

challenging classification tasks as well, such as distinguishing between closely related 

cancer subtypes (such as adenocarcinoma vs. adenoma in gastric and colon cancers, 

adenocarcinoma vs. squamous cell carcinoma in lung tumors) and detecting benign 

vs. malignant tissue. As an example, Coudray et al. developed and applied 

DeepPATH, Inception-v3 architecture-based model, to concurrently classify WSI for 

the TCGA lung cancer cohort into any of the three classes - normal, lung 

adenocarcinoma and lung squamous cell carcinoma - with a reported AUC of 0.97 

[11]. The success of DNNs is not confined to histopathology images but extends to 

other medical images acquired through non-invasive techniques such as Computed 

Tomography (CT) scans, Magnetic Resonance Imaging (MRI) and mammograms, and 

even to photographs of suspicious lesions. For example, Esteva et al. trained a DNN 

(Inception-V3 architecture) on skin lesion images labelled for 757 granular skin 

disease classes [14]. Their model, when tested for carcinoma and melanoma 

classification of photographic and dermoscopic images of skin lesions, outperformed 

(AUC 0.91–0.94) the average accuracy attained by 21 board certified dermatologists. 

Importantly, their model was robust to variabilities inherent to digital photographs 

(due to different camera angles, uneven exposures, and so on), hence making the 

applicability of this model highly generic [14]. In radiology, Anthimopoulos et al. 

showed that CT scans of patients with lung disease can be used to build DNNs that 

classify textural patterns in lung (such as ground glass opacity, micronodules) with an 

average accuracy of 0.85 [15]. Similarly, Jian et al used CT scans to develop DNN that 

predict occult peritoneal metastasis in gastric cancers with an improved AUC (0.92–

0.94) compared to that achieved from clinical and pathological features (AUC = 0.51–

0.63) [16]. In another work, Wang et al. used MRI images from 172 prostate patients 

to train and test a DNN (developed using Caffe deep learning framework by Berkeley 

NOVYI MIR Research Journal ISSN NO: 0130-7673

VOLUME 10 ISSUE 8 2025 PAGE NO: 302



 

AI Research) that could distinguish prostate cancer from benign prostate conditions 

(such as the prostate gland enlargement) with a reported AUC of 0.84 [17]. In a 

retrospective study with biopsy confirmed diagnosis and longitudinal follow-ups, 

McKinney et al. published an ensemble approach with three independent deep 

learning models that predict cancer risk score directly from the mammograms of 

approximately 29,000 women (AUC = 0.75–0.88) [18]. The group also reported an 

improvement in absolute specificity (1.2%−5.7%) and sensi�vity (2.7%−9.4%) of 

cancer detection from mammograms compared to an average radiologist. All in all, 

such models if their performance is confirmed in prospective studies, may play an 

important role in early detection and classification of cancers, especially since their 

performance is comparable, if not better, to experts in the field. Outside the hospital 

settings, AI aided smartphone apps have also started to be adopted, potentially 

bringing early detection of cancerous lesions directly to a user’s handheld device 

[19,20]. However convenient and promising, the diagnostic accuracy of such smart 

phone applications still remains to be clinically validated. Of particular concern are 

cases predicted as false negatives, as they may delay patient from procuring timely 

medical attention [19]. 

 
 

Cancer Staging and Grading: Cancer staging and grading, that is, determining how 

aggressive and advanced the cancer is, is another important component of the 

diagnostic process. Staging can indeed impact treatment choices, such as deciding 

between watchful waiting vs aggressive treatment involving radiation, surgery and 

chemotherapy. In prostate cancer, staging is achieved using the Gleason Score, a 

combination of two scores measuring prevalence of tumor cells in two distinct 

locations on a slide. Deep neural networks have shown promising initial results in 

predicting Gleason scores from histopathology images of prostate tumors [21,22]. 

Nagpal et al. used WSI for H&E-stained prostatectomy specimens to train and test a 

DNN (InceptionV3) and k-nearest-neighbor classifier-based model to predict Gleason 

Scores [21]. The group reported an improved prediction accuracy of Gleason Scores 

estimated from their model (0.70) compared to those determined by a panel of 29 

independent pathologists (0.61). Cancer staging can also be done from radiology 

images: Zhou et al. developed a deep learning approach (based on SENet and 

DenseNet) to predict grade (low versus high) from the MRI images of patients with 

liver cancer and reported an AUC of 0.83 [22]. Overall, these studies indicate 

promising application of AI to cancer staging, with reported performance on par with 

trained experts despite modest AUC. Increasingly, non-imaging data such as genomic 

profiles are also being used for diagnosis and staging. Data obtained from next 

generation sequencing (NGS) – such as whole exome, whole genomes, and targeted 

panels, transcription profiles from microarray, RNA-seq, and microRNAs, methylation 

profiles – can be used to diagnose cancer and classify tumors into subtypes. Because 
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the data provided by these platforms is highly multidimensional (tens of thousands 

of genes can be assessed simultaneously), their use for cancer classification requires 

statistical methods or machine learning [23–25]. The use of machine learning for 

cancer diagnosis and staging from molecular data has in fact been around since the 

early 2000’s, where machine learning approaches such as clustering, support vector 

machine and artificial neural networks were applied to microarray-based expression 

profiles for cancer 

classification and subtype detection [26]. Over the years omics technologies have 

advanced and so have the innovations in the machine learning algorithms. Capper et 

al. demonstrated that a random forest classifier trained exclusively on tumor DNA 

methylation profiles can significantly improve the prediction accuracies for the hard 

to diagnose subclasses of the central nervous system (CNS) cancers (AUC=0.99) [27]. 

Their subclass predictions for 139 cases did not match pathologists’ diagnosis, but 

follow-up of those select cases revealed that ~93% of those mismatched cases were 

in fact accurately predicted by the model [27]. Moving into deep learning methods, 

Sun et al. built and applied DNN to genomic point mutations to classify tissues into 

either of the 12 TCGA cancer types or healthy tissues obtained from the 1000 

Genomes Projects [28]. The classifier, trained on the most frequent cancer specific 

point mutations obtained from whole exome sequencing profiles, was able to 

distinguish between healthy and tumor tissue with high accuracy (AUC=0.94), but did 

not perform as well in a multi-class classification task to distinguish all of 12-cancer 

types at the same time (AUC= 0.70). This work highlighted that accurate cancer 

classification using mutation data is challenging, possibly because of intra-tumor 

heterogeneity and low tumor purity (making mutation detection challenging), 

together with the presence of shared mutations across different cancer types. 

Nonetheless, the work also shows that similar models that use genomic information 

to assess cancer can be applied to genomic profiles obtained from other sources 

such as cell free DNA (cfDNA). 

 

On the Road to Early Cancer Detection: AI is gradually paving its path towards early 

detection of cancer from emerging minimally invasive techniques as well, such as 

liquid biopsies for circulating tumor DNA (ctDNA) or cfDNA. Liquid biopsies, obtained 

via minimally invasive techniques such as a simple blood test, in theory allow for 

early detection of cancer, monitoring risk of relapse over time and guiding treatment 

options. As an example, MSI status can be predicted from ctDNA in endometrial 

cancer patients in order to inform immunotherapy-based treatment [29]. Chabon et 

al. developed a machine learning based approach, Lung-CLiP (cancer likelihood in 

plasma), that predicts the likelihood of ctDNA in blood drawn from lung cancer 

patients [30]. The method first estimates the probability that a cfDNA mutation is 

associated with the tumor (using elastic net model and features that include cfDNA 

fragment size) and then integrates outputs of this model together with copy number 
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scores in an ensemble classifier with five distinct algorithms to predict the presence 

of ctDNA in a blood sample. The method showed modest predicative performance 

(AUC = 0.69–0.98), with performance depending on cancer stage, and a tradeoff 

between specificity and sensitivity for the predictions. In another promising work, 

Mouliere et al. reported a random forest-based classifier trained on features derived 

from the cfDNA fragment sizes that predicts the presence of ctDNA in blood across 

multiple cancer types at a high accuracy (AUC= 0.91– 0.99) [31]. As a complete end-

to-end blood test for cancer, Cohen et al. developed CancerSEEK - for 8 distinct 

cancer types - that not only detects early cancer but also predicts any of the eight 

cancer types directly from the ctDNA [32]. Samples are first classified as cancer-

positive by a logistic regression model applied to mutations in 16 genes and 

expression levels in 8 plasma proteins. The cancer type is then predicted using a 

random forest classifier (accuracies range from 39–84% depending on cancer type) 

[32]. This work is particularly important because 5 out of the 8 cancer types covered 

in this test have no 

early screening tests currently available. Taken together, the initial progression of AI 

in the early cancer detection area is notable but has so far been limited to traditional 

machine learning algorithms. As data acquisition from liquid biopsies expands, we 

anticipate that more advanced deep learning architectures will eliminate the need 

for manual selection and curation of most relevant discriminatory features. We also 

anticipate further use of multimodal approaches (like CancerSEEK) that combine 

several data types, e.g. liquid biopsy and imaging to enhance early detection and 

monitor disease risk over time. 

 

DETECTING CANCER MUTATIONS USING MACHINE LEARNING 
The ubiquitous availability of Next Generation Sequencing (NGS) has made it 

possible for thousands of cancer laboratories to routinely sequence cancer genes, 

exomes and genomes. Identifying genetic variants and mutations in NGS data can be 

done using a variety of computational tools, but frequently fails in certain scenarios, 

such as low coverage or complex, repeat-rich regions of the genome. Several groups 

have explored the idea to re-cast mutation detection as a machine learning problem 

[33,34]. As an example, DeepVariant, a DNN (Inception-V2 architecture) based 

method, was developed to detect variants from aligned NGS reads by first producing 

read pileup images for candidate variants (thereby making it an image classification 

task), and then predicting the probabilities of their genotype likelihood states 

(homozygous reference, heterozygous variant or homozygous variant) [33]. This 

method won an award at the second PrecisionFDA Truth Challenge (2016) for best 

performance in SNP detection. 
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Figure: Clinical applications of AI in early cancer diagnosis. Abbreviations: GP: general 

practitioner, NLP: natural language processing, EHR: electronic healthcare record, ML: 

machine learning, DL: deep learning, NGS: next-generation sequencing. 

 

 

 

Conclusion and Future Scope 

Artificial intelligence (AI) has revolutionised early cancer detection by enhancing diagnostic 

accuracy, reducing time to diagnosis, and assisting medical professionals in identifying 

malignancies at an early stage. Machine learning models, image recognition techniques, and 

predictive analytics have significantly improved screening methods, ultimately contributing 

to better patient outcomes. 

We have seen that the application of AI to healthcare data holds transformative potential 

for early cancer diagnosis and could help address healthcare capacity challenges through 

automation. AI enables the effective analysis of complex, multi-modal data, including clinical 

text, genomic, metabolomic, and radiomic information. 

In this review, we identified a range of convolutional neural network (CNN) models capable 

of detecting early-stage cancers on scan or biopsy images with high accuracy, some of which 

have demonstrated proven impact on workflow triage. Commercial solutions for automated 

cancer detection are increasingly available, and their adoption is expected to rise in the 

coming years. 

In the context of decision-support for symptomatic patients, we emphasise the need for 

caution. Models must be rigorously validated and published in peer-reviewed journals 

before clinical deployment. Furthermore, several challenges remain regarding AI 

implementation, including data anonymisation and storage, which can be both time-

consuming and costly for healthcare providers. 
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We also addressed concerns around model bias, particularly the under-reporting of key 

demographic data such as race and ethnicity. This limitation can impact the generalisability 

and fairness of AI systems, highlighting the importance of inclusive data practices and 

continuous model evaluation in diverse populations. 

In terms of improving study quality and encouraging broader model uptake, quality 

assurance frameworks—such as SPIRIT-AI—and methods to standardise radiomic feature 

values across institutions, as proposed by the Image Biomarker Standardisation Initiative, 

may provide significant benefits . Additionally, disease-specific ‘gold standard’ test sets 

could help clinicians benchmark multiple competing models more effectively and 

consistently. 

Despite the aforementioned challenges, the implications of AI for early cancer diagnosis are 

highly promising, and this field is expected to grow rapidly in the coming years. In the 

future, AI is likely to integrate more deeply with personalised medicine, enhancing detection 

precision through genetic and biomarker analysis. Advances in deep learning and federated 

learning will further improve AI-driven diagnostics while maintaining patient data privacy. 

Moreover, AI-powered wearable devices and real-time monitoring tools could enable 

proactive cancer detection, making early intervention more accessible and effective. 

From the clinical perspective, building clinicians’ trust in AI assisted decision making is also 

critical for the entry of AI in clinic. To this end. recommends development and adoption of 

systematic and pragmatic measures of uncertainty quantification in AI models [. Uncertainty 

in a model may come from the choice of data, accuracy and completeness of data, inherent 

biases in the data, artifacts, and model misspecifications. Estimation of uncertainty in data-

driven prediction models is an area of active research and in the future will provide a 

systematic framework for improving models and increasing confidence in AIassisted clinical 

decision making. Deep learning currently has the reputation of being a “black box” but is in 

essence capturing complex correlations within data. Hence additional research to increase 

model interpretability by understanding how deep learning models learn from a given data, 

and what cellular and molecular mechanistic insights such models can provide, will also 

make the clinical use of AI models more agreeable to clinicians. 

Thinking prospectively, prevention rather than treatment may end up being the most 

compelling application of AI to cancer care. Seminal research has already led the community 

to compile a portfolio of risk factors for cancer. Advances in technology has enabled various 

means of collecting data at an individual patient level. Aside from genetic tests and EHR, 

sensors from smart phone or other wearable devices also collect vast amount of data points 

just for a single patient. These data can empower AI to improve precision of diagnosis by 

sensing physiological and environmental status. They may help facilitate highly personalized 

disease prevention and treatment plans for each patient. Such AI systems may help monitor 

cancer patients remotely, and alert clinicians if need be. In the future, AI models that 

integrate genetic predispositions and EHR, together with lifestyle and environmental factors 

may be able to accurately assess cancer risk for a person in near realtime and suggest 

personalized options for early intervention and appropriate management of risk factors. 
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